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Abstract: The model free (MF) approach allows straightforward extraction of generalized order parameters
and correlation times for internal and overall bond vector reorientational fluctuations from NMR spin relaxation
measurements for macromolecules in solution. The drawback of this approach is the use of a decoupling
approximation that neglects correlations between internal and overall molecular motions. These correlations
are significant when fluctuation amplitudes are less than the size of the “cage” that restricts the bond vector.
In this regime, motion of the bond vector is only indirectly affected by molecule fluctuations through the
orienting potential for the local director axis. By separating the regimes of large and small amplitude molecular
fluctuations, an expression for the spectral density function is derived that does not invoke the decoupling
approximation, but that relies on the same macroscopic level of description as the original MF approach.
The parameters of the spectral density function provide insight into the effects on the MF parameters that
result from violation of the decoupling approximation.

The Lipari-Szabo (LS) model free (MF) approach1,2 provides
a simple description of the correlation functionC(t) for
stochastic fluctuations that modulate nuclear magnetic spin
interactions for molecules in solution. The spectral density
functionJ(ω) given by the cosine Fourier transformation ofC(t)
provides a link between molecular motions and NMR spin
relaxation arising from, for example, dipole-dipole, chemical
shift anisotropy, and quadrupole interactions.3 For dipole-dipole
relaxation of two nuclear spins,C(t) describes fluctuations in
the orientation of the internuclear vector in the laboratory
reference frame. The LS MF approach has been utilized
extensively to extract from NMR experiments such character-
istics as generalized order parameters and correlation times for
internal and overall molecular motions for directly bonded
dipole-coupled spin pairs.4-9

As originally formulated, the LS MF approach assumes that,
when the internal bond motion and overall molecular motion
are independent, the correlation functionC(t) can be factorized
as

whereCo(t) is the autocorrelation function for overall molecular
motion characterized by the correlation timeτm, and Ci(t) is
the autocorrelation function for internal bond motion at a given
molecule orientation characterized by the correlation timeτe.
Equation 1 assumes that internal bond motion in the molecular
reference frame is independent of overall rotational tumbling
in the laboratory reference frame. The validity of this assumption
has already attracted attention in the past.10,11

Despite its simplicity, eq 1 reproduces correctly the model-
independent behavior of the correlation function in two limits:
(a) τe/τm . 1, when the bond vector could be considered as
being fixed in the molecular reference frame, and (b)τe/τm ,
1, which is an adiabatic limit, characterized by the average value
of the bond vector orientation in the molecular reference frame.
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In the former limit,Ci(t) ) 1, and in the latter limit,Ci(t) ) S2,
whereS is the generalized order parameter introduced by LS.
Equation 1 also is valid for arbitrary ratiosτe/τm if the local
geometry of the bond environment is preserved at any moment
of time, that is, if no retardation occurs between the local
structure and the overall molecule motion.

Random distortion of the bond local geometry caused by
overall molecular motion provides another mechanism for bond
vector dynamics, in addition to the conventional LS model. This
mechanism is subject to the following conditions: (a) the bond
vector undergoes restricted rotational diffusion or jumpwise
motion1,9,11 in the orienting potential of a local director axis,
(b) the orienting potential fluctuates due to overall molecular
tumbling, and (c) the mean angular displacement of the molecule
for the “dephasing” timeτe is less than the size of the “cage”
that restricts the local bond motion. Under these circumstances,
the angle between the bond vector and the director axis will be
modulated by molecular reorientation, and the criteria necessary
for application of the decoupling approximation are violated.

The paper derives correlation and spectral density functions
for bond vector reorientations using a macroscopic level of de-
scription similar to MF, and with the same set of the observable
parameters, but without invoking the decoupling approximation.
The correlation and spectral density functions have the same
functional form as is given by the LS approach; however, the
interpretations of the generalized order parameters and correla-
tion times are different when neither of the conditionsτe/τm .
1 or τe/τm , 1 are satisfied. In agreement with microscopic
models, such as the slowly relaxing local structure (SRLS)
formalism,11 the present treatment indicates that MF overesti-
mates generalized order parameters when internal motions are
slow enough to violate the assumption of time scale separation.

Theory

A general expression for an autocorrelation functionC(t) that
describes bond orientational fluctuations for molecules in
isotropic solution is written in the form1

whereµ(t) is the unit radius vector along the direction of the
bond, 〈...〉 indicates the ensemble average over the distribu-
tion of bond orientations, andP2(x) ) (3x2 - 1)/2. Using the
addition theorem for the spherical harmonics, eq 2 can be
expressed as

whereΩ(t) and Ω(0) are the solid angles with respect to the
laboratory reference frame, andY2

m[Ω(t)] are the spherical
harmonic functions.

The calculation of the time evolution of the correlation
functions 〈Y2

m[Ω(t)]Y2
m*[Ω(0)]〉 can be reduced to the calcula-

tion of the time evolution of the average valuesY2
m[Ω(t)].

Indeed, according to the definition of the correlation function

in whichG(Ω,t|Ω0,0) is the conditional probability density that
the solid angle is equal toΩ at time t given thatΩ ) Ω0 at t
) 0, andG(Ω0,0) is the stationary probability density thatΩ )
Ω0 at t ) 0. Thus, the correlation function in eq 4 can be
expressed as

where〈Y2
m[Ω(t)]〉Ω(0) is the average value ofY2

m[Ω(t)] under the
initial conditions〈Y2

m[Ω(t ) 0)]〉 ) Y2
m[Ω(0)].

As an initial step, the correlation functionC(t) is calculated
by neglecting overall molecular motion and assuming a simple
relaxation law for the components〈Y2

m[Ω(t)]〉:

with a single correlation timeτe. 〈Y2
m〉0 ) 〈Y2

m〉ΩLM

0 is the thermal
equilibrium average value ofY2

m[Ω(t)] at fixed molecule
orientation, whereΩLM represents the Euler angles between the
local molecule axis and the laboratory reference frame. Com-
bining eqs 3, 5, and 6 using the initial conditions specified above
yields a differential equation forC(t):

Equation 7 has been obtained using the relations

whereS2 is the generalized order parameter and is independent
of the choice of the molecular orientation. Integration of eq 8
gives

Equation 9 is a limiting case of the total correlation function
including overall molecular motion in the limitτm f ∞. It
coincides with the LS expression in the same limit. Because eq
9 is the solution of eq 7, the present approach and the LS MF
formalism are, in the limitτm f ∞, based on the same model
of bond vector fluctuations, which is distinct from the diffusion
model for bond vector motion employed in SRLS formalism.11

To take into account the overall molecular motion, the
components〈Y2

m〉0 in eq 6 are replaced by the time-dependent
“quasiequilibrium” values〈Y2

m(t)〉eq, whose time dependence
arises from the overall molecular reorientation. Thus, eq 6 is
recast as

The value of〈Y2
m(t)〉eq has a clear physical meaning according

to its definition:

〈Y2
m[Ω(t)]Y2

m*[Ω(0)]〉 ) 〈〈Y2
m[Ω(t)]〉Ω(0)Y2

m*[Ω(0)]〉 (5)

d
dt

〈Y2
m[Ω(t)]〉 ) - 1

τe
(〈Y2

m[Ω(t)]〉 - 〈Y2
m〉0) (6)

dC(t)
dt

) - 1
τe

[C(t) - 1
5
S2] (7)

(4π/5) ∑
m)-2

2

|Y2
m[Ω(t)]|2 ) 1

(4π/5) ∑
m)-2

2

|〈Y2
m〉0|2 ) S2 (8)

C(t) ) 1
5
(e-t/τe + S2(1 - e-t/τe)) (9)

d
dt

〈Y2
m[Ω(t)]〉 ) - 1

τe
(〈Y2

m[Ω(t)]〉 - 〈Y2
m(t)〉eq) (10)

C(t) ) 1
5
〈P2(µ(t)•µ(0))〉 (2)

C(t) )
4π

25
∑

m)-2

2

〈Y2
m[Ω(t)]Y2

m*[Ω(0)]〉 (3)

〈Y2
m[Ω(t)]Y2

m*[Ω(0)]〉 )

∫dΩ ∫dΩ0G(Ω0,0)G(Ω,t|Ω0,0)Y2
m(Ω)Y2

m*(Ω0) (4)
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whereP(Ω, t) is the time-dependent probability density for a
given molecular orientation in the laboratory reference frame
and is a solution of a rotational diffusion equation; that is, eq
10 neglects the effect of the bond vector on the overall motion.
〈Y2

m(t)〉eq f 0 at t f ∞ because all orientations of the molecule
in isotropic solution have equal probability at equilibrium. The
time dependence of〈Y2

m(t)〉eq for isotropic molecular rotational
diffusion is described phenomenologically by

The approach based on equations similar to eq 10 has proven
to be successful in describing kinetic phenomena in various
systems with orientational ordering (see, e.g., refs 12,13).
Combining eqs 3, 5, and 10 using the initial conditions specified
above results in a differential equation forC(t):

whose solution is

where

In contrast to the correlation function given by eq 14, the LS
MF correlation function is

and is a solution of the equation

The additional term-(1/τm)CLS(t) in eq 18 describes synchro-
nous variations in the average orientation of the bond vector
and the molecular orientation induced through the geometrical
constraints imposed by a rigid bond environment. As a
consequence, dynamics of the bond vector in the molecular
reference frame do not depend on overall tumbling, contrary to
the dynamics described by eq 14.

In the above discussion, the LS mechanism of bond fluctua-
tions was compared to the proposed mechanism, which takes

into account distortions of the local bond environment ac-
companied by the effect of the director orienting potential. To
take into account the coexistence of both mechanisms, which
is most likely to occur in actual molecules, the ad hoc assump-
tion can be made, by comparing eqs 13 and 18, that the
correlation function in the intermediate regime is governed by
the equation:

with τm′ g τm. Equation 19 reduces to eq 13 forτm′ f ∞ and
to eq 18 forτm′ ) τm. The meaning of eq 19 in the intermediate
regime follows from its solution

where

Although eqs 14, 17, and 20 have the form of a product between
the overall rotational correlation function,Co(t) ) exp(-t/τm)/
5, and a second correlation function, given in large brackets,
eqs 14 and 20, unlike eq 17, do not incorporate the decoupling
approximation of eq 1, because the parameterτ̃e depends on
both τe andτm.

As shown by eqs 20 and 21, eq 19 assumes that the
correlation frequency 1/τm due to overall molecular rotational
diffusion can be decomposed into two independent contribu-
tions 1/τm′ and 1/τm′′. The latter frequency is associated with
small amplitude molecular fluctuations such that the local
axis displacement for timet ≈ τe < τm′′ is less than the size of
the cage restricting the bond vector motion. The rigid bond
limit τe f ∞ thus corresponds toτm′′ f ∞ and therefore to
τm′ f τm. In this context,τe is the analogue of a dephasing
time that prevents the accommodation of large displace-
ments. In the regime of small fluctuations, the bond vector
dynamics are affected by the orienting potential for the director
axis. In contrast, the frequency 1/τm′ is associated with large
amplitude molecule fluctuations for which the bond vector
orientation is strongly affected by displacements of the cage
environment. As shown by the second line of eq 20, the
correlation function has the same functional form asCLS(t) in
eq 17, but the effective order parameters and correlation times
are scaled according to eqs 22 and 23. Examples of the
correlation functions calculated using eqs 14, 17, and 20 are
shown in Figure 1.

Fourier transformation leads to the following forms of the
spectral density functions:
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〈Y2
m(t)〉eq ) ∫dΩLMP(ΩLM,t)〈Y2

m[Ω(t)]〉ΩLM

0 (11)

〈Y2
m(t)〉eq ) 〈Y2

m〉0e-t/τm (12)

dC(t)
dt

) - 1
τe

[C(t) - 1
5
S2e-t/τm] (13)

C(t) ) 1
5(e-t/τe + S2

τm

τm - τe
(e-t/τm - e-t/τe))

) 1
5
e-t/τm(e-t/τ̃e + S̃2(1 - e-t/τ̃e)) (14)

S̃ 2 )
τm

τm - τe
S2 (15)

τ̃e )
τm

τm - τe
τe (16)

CLS(t) ) 1
5
e-t/τm(e-t/τe + S2(1 - e-t/τe)) (17)

dCLS(t)
dt

) - 1
τm

CLS(t) - 1
τe

[CLS(t) - 1
5
S2e-t/τm] (18)

dC(t)
dt

) - 1
τ′m

C(t) - 1
τe

[C(t) - 1
5
S2e-t/τm] (19)

C(t) ) 1
5
e-t/τm′(e-t/τe +

τ′′m
τ′′m - τe

S2(e-t/τm′′ - e-t/τe))
) 1

5
e-t/τm(e-t/τ̃e + S̃2(1 - e-t/τ̃e)) (20)

1
τm

) 1
τ′m

+ 1
τ′′m

(21)

S̃ 2 )
τ′′m

τ′′m - τe
S2 (22)

τ̃e )
τ′′m

τ′′m - τe
τe (23)
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with 1/τ ) 1/τe + 1/τm for the LS correlation function of eq
17, and

with 1/τ̃ ) 1/τ̃e + 1/τm for eq 20. These two spectral density
functions have the same functional form and would yield
equivalent fits to experimental data; however, as indicated by
eqs 22 and 23, the interpretations of the generalized order
parameters and correlation times are different.

Simulations

The predictions of the theoretical model were supported
qualitatively by Monte Carlo simulations. Overall tumbling of
the director axis was treated as a random walk on the surface
of a sphere with an angular step size∆θD ) 0.01 and a random
step direction drawn from a uniform distribution on [0, 2π].
Internal motion of the bond vector was modeled using an axially
symmetric potentialU(θ, φ)/kT ) U0 [1 - P2(cosθ)] in which
U0 ) 8kT, andk is the Boltzmann constant. Random steps of
the bond vector had an angular step size∆θM ) 0.01 and a
random step direction drawn from a uniform distribution on
[0, 2π]. The Metropolis algorithm was used to accept or reject
internal steps of the bond vector at a given orientation of the
director axis. The relative scaling of the effective decay constant
for overall and internal motions was adjusted by varying the
number of internal steps,p, taken for each overall step.
Coordinates of the bond vector were recorded after everym )
10 overall steps. A total ofN ) 5 × 105 coordinatesµi were
used to calculate the correlation function according to the
expression:

for 0 e n e 500.
Four different protocols were used to simulate the effects of

the decoupling approximation. In protocol 1, in addition to the
internal jumps driven by the Metropolis algorithm, the bond
vector was rotated in a manner identical to that of the director

axis at each overall step; thus, the relative orientation of the
bond vector and the director axis was unchanged during an
overall step. In protocol 2, the orientation of the bond vector
was not changed during an overall step. In protocol 3, the bond
vector was rotated along with the director axis for one-half of
the overall steps and left unchanged for the other half; the
decision whether to rotate the bond vector at a given overall
step was made randomly. In protocol 4, the bond vector was
rotated in the same direction as the overall step, but the step
size was reduced by a factor drawn from the uniform distribution
on [0, 1]. Correlation functions were simulated for overall
rotational diffusion alone by using the coordinates of the director
axis. Correlation functions were simulated for internal motions
in the absence of overall diffusion by setting the overall step
size to zero.

Figure 2 shows simulated correlation functions for the above
four protocols. Independent simulations of overall rotational
diffusion gaveτm ) 660; in this approach,τm ) 2/(3m∆θD

2).
Independent simulations of internal bond vector motion in the
absence of overall tumbling gaveS2 ) 0.75 and eitherτe/τm )
0.12 orτe/τm ) 0.014 for 2 or 20 internal steps per overall step,
respectively; in this approach,τe/τm ) (1 - S2)(∆θD

2 /p∆θM
2 ). In

agreement with the similar functional forms of eqs 17 and 20,
all simulated correlation functions for protocols 1-4 were
accurately fit by the LS MF correlation function of eq 17; fitted
parameters are given in the figure caption. Protocol 1 embodies
the assumptions of the LS MF approach. Accordingly, fitted
parameters were identical to those obtained from independent
simulations of overall and internal motion. In agreement with
eq 1, the simulated correlation function was indistinguishable

Figure 1. Plots are shown for (- - -) the correlation function of eq 14, (s)
the LS correlation function of eq 17, and (s s s) the correlation function
of eq 20. Curves were calculated forτe ) 0.2 τm, τm′ ) 1.5 τm, andS2 )
0.6.

Figure 2. Correlation functions simulated withS2 ) 0.75 and (a)τe/τm )
0.12 or (b)τe/τm ) 0.012, as determined from independent simulations of
correlation functions for overall and internal motions. Simulation protocols
are described in the text. (s) Data simulated for protocol 1, yielding fitted
apparent values of (a)S2 ) 0.76,τe/τm ) 0.12 and (b)S2 ) 0.75,τe/τm )
0.014. (- - -) Data simulated for protocol 2, yielding fitted apparent values
of (a) S2 ) 0.87,τe/τm ) 0.12 and (b)S2 ) 0.76,τe/τm ) 0.014. (s s s)
Data simulated for protocol 3, yielding fitted apparent values of (a)S2 )
0.80,τe/τm ) 0.13; for clarity, data are not shown for (b). (s - s) Data
simulated for protocol 4, yielding fitted apparent values of (a)S2 ) 0.83,
τe/τm ) 0.12; for clarity, data are not shown for (b).

JLS(ω) ) 2
5((1 - S2)τ

1 + ω2τ2
+

S2τm

1 + ω2τm
2 ) (24)

J(ω) ) 2
5((1 - S̃2)τ̃

1 + ω2τ̃2
+

S̃2τm

1 + ω2τm
2 ) (25)

Cn )
1

5(N - n)
∑
i)1

N-n

P2(µi•µi+n) (26)
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from the correlation function obtained as the product of the
correlation functions for separate independent simulations of
overall and internal motions. Protocol 2 embodies the largest
retardation or “cage” effects because the instantaneous orienta-
tion of the bond vector is not affected by an overall jump of
the director axis. In agreement with the theoretical results given
by eqs 14 and 15, the apparent value ofS2 (corresponding toS̃2

in eq 22) is overestimated by∼10% whenτe/τm ) 0.12, but
the apparent value ofS2 approaches the expected value when
τe/τm ) 0.014. Models 3 and 4 embody partial retardation
effects. Accordingly, the degree by which the apparent value
of S2 is overestimated is reduced as compared to protocol 2, as
expected from eqs 20 and 22. For the parameter ranges
examined, the simulated correlation functions are very weakly
dependent onτe, and nearly identical fits are obtained ifτe is
fixed at the value expected for independent internal motion or
at the value given by eq 23.

Discussion and Conclusion

If the decoupling approximation is violated because distortion
of the bond vector local geometry results from overall molecular
tumbling, then the theoretical analysis of bond vector orienta-
tional fluctuations presented herein demonstrates that values of
the generalized order parameter obtained using the LS MF
formalism will be overestimated unlessτe/τm , 1. This
theoretical result is confirmed qualitatively by simulations of
correlation functions for simple motional models exhibiting
“cage” effects. The microscopic SRLS treatment also demon-
strates that violation of the decoupling approximation results
in overestimation of the generalized order parameter.11 Fur-
thermore, in both approaches, the degree of overestimation of
the generalized order parameter depends on the time scale
separation between internal and overall motion. Concurrence
between these two methods suggests that these conclusions are
robust. Therefore, the present treatment allows simple estimation
of the size of the errors in the generalized order parameter that
result from violation of the decoupling approximation.

The spectral density functions presented herein are based on
a macroscopic model distinct from the diffusion model em-
ployed by SRLS formalism. Consequently, while the two
approaches yield similar qualitative conclusions about the effects
of violation of the decoupling approximation on the generalized
order parameter, identical quantitative predictions are not to be
expected. In addition, the macroscopic approach also suggests
that violation of the decoupling approximation leads to over-
estimation of the internal correlation timeτe, in contrast to the
underestimation predicted by the SRLS formalism.11

As shown by eq 22 and in Figure 3, the correction factor for
S2, as compared to the LS MF estimate, is more significant for
smaller molecules because the ratioτe/τm is larger. Overestima-
tion of S2 may be important in the studies of the temperature
dependence ofS,14,15because the ratioτe/τm is itself temperature
dependent (it decreases as the temperature decreases). Conse-
quently, violation of the decoupling approximation potentially
introduces an artificial temperature dependence toS.

The MF formalism has been applied extensively to character-
ize conformational fluctuations in proteins.6-8 The internal
motions of interest for a bond vector in a globular protein result,

to a first approximation, from the interplay between relatively
soft potentials, such as dihedral angle fluctuations, and relatively
stiff potentials, such as repulsive van der Waals interactions.
The effects of very high-frequency covalent bond stretches can
be incorporated into an effective coupling constant for the
stochastic process.16 In the hydrophobic core of a protein, atoms
are nearly closely packed, and the van der Waals interactions
would be expected to result in very limited “cage” effects and
relatively small deviations from the LS MF results. In contrast,
surface-exposed loops and amino acid side chains are not
necessarily closely packed with other protein atoms, and “cage”
effects leading to violations of the decoupling approximation
would be expected to be more significant. In agreement with
this simple view, the largest differences between the LS MF
and SRLS analyses of experimental NMR data for the backbone
15N-1H bond vectors in the protein ribonuclease H are observed
for amino acid residues in loops with values ofτe > 1 ns, as
compared toτm ) 9.28 ns.11

In conclusion, on the basis of the principles of nonequilibrium
statistical mechanics, a simple phenomenological treatment of
internal and overall orientational fluctuations for macromol-
ecules in solution has been proposed that avoids invoking the
decoupling approximation. The resulting spectral density func-
tion has the same form and contains the same set of macroscopic
parameters as is present in the original LS approach; however,
additional contributions to the generalized order parameters and
internal correlation times arise from the effect of asynchronous
fluctuations of the bond vector and the local director axis.
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